2018

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black pen only
- Board-approved calculators may be used
- A reference sheet is provided
- In Questions 11 14 show relevant mathematical reasoning and/or calculations

Total Marks – 70 Section I Questions 1 – 10 **10 marks**Allow about 15 minutes for this section **Section II** Questions 11 – 14 **60 marks**Allow about 1 hour and 45 minutes for

NI			
Namai			
Name:			

Section 1 10 marks

Attempt Questions 1 – 10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1 - 10.

- 1 Which of the following expressions is equivalent to $\cos x + \sqrt{3} \sin x$?
 - (A) $2\cos\left(x+\frac{\pi}{3}\right)$
 - (B) $2\cos\left(x-\frac{\pi}{3}\right)$
 - (C) $2\cos\left(x+\frac{\pi}{6}\right)$
 - (D) $2\cos\left(x-\frac{\pi}{6}\right)$
- 2 If (x-2) and (x+1) are factors of $x^3 + x^2 + bx + c$ what is the value of (b+2c)?
 - (A) **-4**
 - (B) 12
 - (C) -8
 - (D) -12
- The diagram below shows a circle with tangent. If O is the centre, find the value of χ° . Diagram is not to scale.
 - (A) 60°
 - (B) 30°
 - (C) 15°
 - **(D)** 20°

4 Which of the following equations represents the graph below?

(A)
$$y = 2 \cos^{-1}(3x)$$

(B)
$$y = 2 |\sin^{-1}(3x)|$$

(C)
$$y = 3 \cos^{-1}(2x)$$

(D)
$$y = 3 \sin^{-1}(2x)$$

5 Evaluate
$$\int_0^1 \frac{e^x}{1+e^x} dx$$
.

(A)
$$\frac{e}{1+e}$$

(B)
$$\frac{e^2}{1+e^2}$$

(C)
$$ln(1 + e)$$

(D)
$$\ln\left(\frac{1+e}{2}\right)$$

A parabola has the parametric equations x = 6t, $y = 3t^2$. Hence $\frac{dy}{dx}$, in Cartesian form, is equal to which of the following?

(B)
$$\frac{x^2}{12}$$

(C)
$$\frac{x}{6}$$

(D)
$$\frac{2x}{9}$$

7 What is the general solution of $\cos 2\alpha = \frac{1}{\sqrt{2}}$

(A)
$$\alpha = \frac{\pi}{8} + n\pi$$
 or $\alpha = -\frac{\pi}{8} + n\pi$, for $n \in \square$.

(B)
$$\alpha = \frac{\pi}{8} + 2n\pi \text{ or } \alpha = \frac{7\pi}{8} + 2n\pi, \text{ for } n \in \square.$$

(C)
$$\alpha = \frac{\pi}{4} + n\pi \text{ or } \alpha = \frac{3\pi}{4} + n\pi, \text{ for } n \in \square.$$

(D)
$$\alpha = \frac{\pi}{4} + 2n\pi \text{ or } \alpha = \frac{3\pi}{4} + 2n\pi, \text{ for } n \in \square.$$

A bag contains 5 identical blue marbles, 6 identical black marbles and 3 identical red marbles. Three marbles are drawn at random. Which expression below gives the correct probability that exactly two blue marbles are drawn?

(A)
$$\frac{{}^{5}C_{2}}{{}^{14}C_{3}}$$

(B)
$$\frac{{}^{5}C_{2} \times {}^{9}C_{1}}{{}^{14}C_{3}}$$

(C)
$$\frac{2}{5} \times \frac{1}{9}$$

(D)
$$\frac{2}{14} \times \frac{1}{9}$$

- 9 If $f(x) = \frac{3 + e^{2x}}{5}$, which of the following is $f^{-1}(x)$?
 - (A) ln(5x-3)
 - (B) $\frac{1}{2}\ln(5x-3)$
 - (C) ln(5x)-ln(3)
 - (D) $\frac{1}{2} \left(\ln(5x) \ln(3) \right)$
- The population, P, of animals in an environment in which there are scarce resources is increasing such that $\frac{dP}{dt} = P(100 P)$, where t is time. The initial population is 20 animals. Which of the following is true?
 - (A) $P = 100 80e^{100t}$
 - (B) The population is increasing most rapidly when P = 50.
 - (C) The population is increasing most rapidly when t = 50.
 - (D) The maximum population is P = 50.

End of Section 1

Section II

60 marks

Attempt Questions 11 - 14

Allow about 1 hour and 45 minutes for this section

Answer each question in a SEPARATE page. Extra writing booklets are available.

In questions 11 – 14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.

- (a) Determine the acute angle between the lines x+y-5=0 and x-2y-5=0, correct to the nearest minute.
- (b) Evaluate $\int_{\frac{\pi}{16}}^{\frac{\pi}{8}} \cos^2 2x \, dx$ leaving your answer in exact form.
- (c) (i) Sketch $y = \frac{x-1}{x+1}$, showing all asymptotes and intercepts.
 - (ii) Hence, or otherwise, solve $\frac{x-1}{x+1} > 1$.
- (d) a, b and c are the roots of the polynomial

$$3x^3 + 4x^2 - 5x - 8 = 0$$

Find the value of
$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c}$$
.

(e) Find the exact value of $\sin 2 \left(\tan^{-1} \frac{1}{2} \right)$

End of Question 11

Question 12 (15 marks) Use a SEPARATE writing booklet.

- (a) Consider the expansion of $\left(2x^2 \frac{1}{x}\right)^9$.
 - (i) Find the coefficient of x^6 .

2

3

- (ii) Determine the size of the greatest coefficient.
- (b) Use the substitution u = 9 x to evaluate $\int_0^5 x \sqrt{9 x} dx$
- (c) The point P(1,2) divides the interval AB in the ratio k:1. If A is the point (-3,6) and B is the point (7,-4), determine the value of k?
- (d) Two metals, A and B, are heated in separate ovens. Metal A is heated to a temperature of 175° and metal B is heated to a temperature of 275° . The metals are taken out of the ovens at the same time and left in a room to cool. The metals cool at different rates. The temperature of metal A is given by $T_A = 25 + 150e^{-\left(\frac{1}{20}\ln^3\right)t} \text{ where } t \text{ is the time in minutes after the metals have been removed from the ovens. The temperature of metal } B \text{ is given by } T_B = 25 + 250e^{-kt}$
 - (i) Twenty minutes after being removed from the oven the temperature of metal B **1** is 175° . Show that

$$k = \frac{1}{20} \ln \frac{5}{3}.$$

- (ii) How many minutes after being removed from the ovens will the metals have the same temperature? Write your answer to the nearest minute. **2**
- (e) Prove by mathematical induction that

$$\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{n}{(n+1)!} = \frac{(n+1)! - 1}{(n+1)!}$$

n is any positive integer, where $n \ge 1$.

End of Question 12

Question 13 (15 marks) Use a SEPARATE writing booklet.

(a) Sketch
$$f(x) = \sin^{-1}\left(\frac{5x}{3}\right)$$
.

- (ii) Find f'(x) for the function.
- (b) Evaluate $\int_{0}^{\frac{1}{\sqrt{3}}} \frac{2}{9+4x^2} dx$.
- (c) An office network consisting of 20 computers has been attacked by a computer virus. The probability that any particular computer has been affected by the virus is $\frac{1}{5}$. A computer technician has to check each computer individually.
 - (i) Write down an expression for the probability that exactly six of the computers have been affected..
 - (ii) Find the probability that exactly six of the computers have been affected **2** and they are the first six computers that the technician checks.
- (d) $P(2ap, ap^2)$ is a point on the parabola $x^2 = 4ay$. The normal to the parabola at P cuts the y-axis at N. M is the midpoint of PN.

- (i) Show that *N* has coordinates $(0, ap^2 + 2a)$.
- (ii) Determine the coordinates of M.
- (iii) Hence, find the locus of *M* as *P* moves on the parabola. 3

1

End of Question 13

Question 14 (15 marks) Use a SEPARATE writing booklet.

(a) If
$$3\sin x + \sqrt{3}\cos x = R\sin(x + \alpha)$$
, determine the values of R and α .

(b)

The diagram above shows the cyclic quadrilateral *ABCD*. The tangents drawn from point *X* touch the circle at *A* and *B*. *XA* produced meets *CD* produced at *Y*. The chord *DB* is parallel to *YX*.

- (i) Given $\angle BAX = \alpha$ show that $\angle BCD = 2\alpha$.
- (ii) Show that *BXYC* is a cyclic quadrilateral. **2**
- (c) A four letter employee password is formed from the letters *A*, *B*, *C*, *D*, *E* and *F*.
 - (i) If repetition of letters is not allowed, how many different passwords beginning with *A* can be formed?

1

(ii) If repetition is allowed, how many different passwords can be formed

if exactly one of the letters must appear twice?

Question 14 continues on page 16

Question 14 (continued)

(d) The projectile is fired on the x-y plane with initial velocity V and an angle of projection θ . You are given that the Cartesian equation of the projectile is

$$y = tan\theta - \frac{gx^2}{2V^2}sec^2\theta$$
 (Do not prove this.)

- (i) Show that the range is given by $R = \frac{V^2 \sin 2\theta}{g}$.
- (ii) A projectile falls 100 metres short of a target when the angle of projection is 15° and lands 558.8 metres past the target when the angle of projection is 30°. Find the angle of projection required to hit the target giving your answer correct to the nearest minute.

End of Paper.

2018

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

Multiple-Choice Answer Sheet

Select the alternative A, B, C, or D that best answers the question by

Section 1 10 marks

Attempt Questions 1 - 10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1 - 10.

Which of the following expressions is equivalent to $\cos x + \sqrt{3} \sin x$?

(A)
$$2\cos\left(\pi + \frac{\pi}{3}\right)$$

(A)
$$2\cos\left(x + \frac{\pi}{3}\right)$$

$$(B) \quad 2\cos\left(x - \frac{\pi}{3}\right)$$

$$(C) \quad 2\cos\left(x + \frac{\pi}{6}\right)$$

$$2\cos\left(x-\frac{\pi}{3}\right)$$

(D)
$$2\cos\left(x-\frac{\pi}{2}\right)$$

If (x-2) and (x+1) are factors of $x^3 + x^2 + bx + c$ what is the value of (b+2c)?

8+x+20+c=0 20+c=-12--(t)

 $^{\oplus}$

Э

ω The diagram below shows a circle with tangent. If O is the centre, find the value of x^* .

Which of the following equations represents the graph below?

- (C) $y = 3 \cos^{-1}(2x)$ (B) $y = 2 \left| \sin^{-1}(3x) \right|$
- 059527
- (D) $y = 3 \sin^{-1}(2x)$
- -0.5 % 5.0.5 -1 5 5x 5.1

- Evaluate $\int_0^1 \frac{e^x}{1+e^x} dx$
- 5 1+0 x bd
- = [m/1tex]]
- (D) $\ln\left(\frac{1+e}{2}\right) = \ln\left(\frac{1+e}{1+e}\right)$ $= \ln\left(\frac{1+e}{2}\right)$ A parabola has the parametric equations x = 6t, $y = 3t^2$. Hence $\frac{dy}{dx}$, in Cartesian form, is equal to which of the following?

OXX 11

- ⊞
- 3
- Э 9 2x

What is the general solution of $\cos 2\alpha = \frac{1}{\sqrt{2}}$

- \mathfrak{S} $\alpha = \frac{\pi}{8} + n\pi$ or $\alpha = -\frac{\pi}{8} + n\pi$, for $n \in \mathbb{D}$.
- ⊞ $\alpha = \frac{\pi}{8} + 2n\pi$ or $\alpha = \frac{7\pi}{8} + 2n\pi$, for $n \in \mathbb{D}$.
- S $\alpha = \frac{\pi}{4} + n\pi$ or $\alpha = \frac{3\pi}{4} + n\pi$, for $n \in \square$.
- $\alpha = \frac{\pi}{4} + 2n\pi$ or $\alpha = \frac{3\pi}{4} + 2n\pi$, for $n \in \mathbb{D}$.

A bag contains 5 identical blue marbles, 6 identical black marbles and 3 identical red correct probability that exactly two blue marbles are drawn? marbles. Three marbles are drawn at random. Which expression below gives the

- \mathfrak{E} 2,20
- 3
- Э 2 14×1 9

- Cossed = In
- : 28 = 21 T + Co- (+
- がすられる大人

- (A) $\ln(5x-3)$

- 2x -3 = 6x
- animals. Which of the following is true? The population, P, of animals in an environment in which there are scarce resources is (D) $\frac{1}{2} \left(\ln(5x) - \ln(3) \right)$ increasing such that $\frac{dP}{dt} = P(100 - P)$, where t is time. The initial population is 20 24=10/2-3 :. 12-x9/20/2x-3

10

(A)
$$P = 100 - 80e^{100t}$$

- <u>B</u> The population is increasing most rapidly when P = 50.
- 3 The population is increasing most rapidly when t = 50.
- The maximum population is P = 50.

Θ

1)

[3-1+7-7]

(b) $\frac{(a)}{m_{z}=1} \times \frac{+y-5=0}{m_{z}=\pm} \times \frac{-y-5=0}{2}$ $\frac{-1-\frac{1}{2}}{2}$ $\frac{-1-\frac{1}{$	THE PROPERTY OF THE PROPERTY O

4 x x

= 18 20 xh

198 20 min 97 min

7B = 25 +250 Ext = 25+150 Q Stom =]t t=20 7=175 175 =25+250E 6 xx 150 6 20x = 3 70x= [] 10= 25 m 25

